Low-Complexity Adaptive Set-Membership Reduced-rank LCMV Beamforming

نویسندگان

  • Lei Wang
  • Rodrigo C. de Lamare
چکیده

This paper proposes a new adaptive algorithm for the implementation of the linearly constrained minimum variance (LCMV) beamformer. The proposed algorithm utilizes the setmembership filtering (SMF) framework and the reduced-rank joint iterative optimization (JIO) scheme. We develop a stochastic gradient (SG) based algorithm for the beamformer design. An effective time-varying bound is employed in the proposed method to adjust the step sizes, avoid the misadjustment and the risk of overbounding or underbounding. Simulations are performed to show the improved performance of the proposed algorithm in comparison with existing full-rank and reduced-rank methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Set-Membership Reduced-Rank Least Squares Beamforming Algorithms

This paper presents a new adaptive algorithm for the linearly constrained minimum variance (LCMV) beamformer design. We incorporate the set-membership filtering (SMF) mechanism into the reduced-rank joint iterative optimization (JIO) scheme to develop a constrained recursive least squares (RLS) based algorithm called JIO-SM-RLS. The proposed algorithm inherits the positive features of reduced-r...

متن کامل

Low-Complexity Reduced-Rank Beamforming Algorithms

A reduced-rank framework with set-membership filtering (SMF) techniques is presented for adaptive beamforming problems encountered in radar systems. We develop and analyze stochastic gradient (SG) and recursive least squares (RLS)-type adaptive algorithms, which achieve an enhanced convergence and tracking performance with low computational cost as compared to existing techniques. Simulations s...

متن کامل

Adaptive Reduced-Rank LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Filters: Design and Analysis

This paper presents reduced-rank linearly constrained minimum variance (LCMV) beamforming algorithms based on joint iterative optimization of filters. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of filters according to the minimum variance criterion. The proposed optimization procedure adjusts the parameters of a projection matrix and an adaptive redu...

متن کامل

Reduced Rank Space-time Adaptive Processing with Quadratic Pattern Constraints for Airborne Radar

Reduced rank (RR) linearly constrained minimum variance (LCMV) adaptive beamforming with quadratic pattern constraints (QPC) is applied to space-time adaptive processing (STAP) for airborne radar. The problem is formulated for general rank reducing transformations and main beam and sidelobe pattern control is achieved by imposing a set of inequality constraints on the mean-square error between ...

متن کامل

Robust Reduced-Rank Adaptive LCMV Beamforming Algorithms Based on Joint Iterative Optimization of Parameters

This chapter presents reduced-rank linearly constrained minimum variance (LCMV) algorithms based on the concept of joint iterative optimization of parameters. The proposed reduced-rank scheme is based on a constrained robust joint iterative optimization (RJIO) of parameters according to the minimum variance criterion. The robust optimization procedure adjusts the parameters of a rank-reduction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1303.3636  شماره 

صفحات  -

تاریخ انتشار 2013